The linear-quadratic model and most other common radiobiological models result in similar predictions of time-dose relationships.
نویسندگان
چکیده
One of the fundamental tools in radiation biology is a formalism describing time-dose relationships. For example, there is a need for reliable predictions of radiotherapeutic isoeffect doses when the temporal exposure pattern is changed. The most commonly used tool is now the linear-quadratic (LQ) formalism, which describes fractionation and dose-protraction effects through a particular functional form, the generalized Lea-Catcheside time factor, G. We investigate the relationship of the LQ formalism to those describing other commonly discussed radiobiological models in terms of their predicted time-dose relationships. We show that a broad range of radiobiological models are described by formalisms in which a perturbation calculation produces the standard LQ relationship for dose fractionation/protraction, including the same generalized time factor, G. This approximate equivalence holds not only for the formalisms describing binary misrepair models, which are conceptually similar to LQ, but also for formalisms describing models embodying a very different explanation for time-dose effects, namely saturation of repair capacity. In terms of applications to radiotherapy, we show that a typical saturable repair formalism predicts practically the same dependences for protraction effects as does the LQ formalism, at clinically relevant doses per fraction. For low-dose-rate exposure, the same equivalence between predictions holds for early-responding end points such as tumor control, but less so for late-responding end points. Overall, use of the LQ formalism to predict dose-time relationships is a notably robust procedure, depending less than previously thought on knowledge of detailed biophysical mechanisms, since various conceptually different biophysical models lead, in a reasonable approximation, to the LQ relationship including the standard form of the generalized time factor, G.
منابع مشابه
The Role of radiobiological parameters on Tumor control probability (TCP) in prostate cancer
Introduction: The aim of this study was to evaluation radiobiological modeling parameters on tumor control probability (TCP) for prostate cancer in three different models. These parameters included α⁄β ratios and cell surviving fraction at 2 Gy (SF2). Materials and Methods: The Poisson, equivalent uniform dose (EUD) and linear quadratic (LQ) models was used as...
متن کاملRadiobiological Modeling of Acute Esophagitis Following Radiotherapy of Thorax and Head-Neck Tumors: A Comparison of Lyman Kutcher Burman with Equivalent Uniform Dose-Based Models
Introduction: The current study aimed to compare the performance of radiobiological models in predicting acute esophagitis (AE) complications after three-dimensional conformal radiation therapy (3D-CRT). Material and Methods: Out of a total of 100 patients, 50 patients with concurrent chemotherapy and 50 patients without such therapy wer...
متن کاملTumour radiobiology beyond fractionation
Historically it has been shown repeatedly that single high doses of radiation do not allow a therapeutic differential between tumor and critical normal tissues but dose fractionation does. The purpose of conventional dose fractionation is to increase dose to the tumor while preserving normal tissue function. Tumors are generally irradiated with 2Gy dose per fraction delivered daily to a more or...
متن کاملFunctional-Coefficient Autoregressive Model and its Application for Prediction of the Iranian Heavy Crude Oil Price
Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...
متن کاملComparison of Kullback-Leibler, Hellinger and LINEX with Quadratic Loss Function in Bayesian Dynamic Linear Models: Forecasting of Real Price of Oil
In this paper we intend to examine the application of Kullback-Leibler, Hellinger and LINEX loss function in Dynamic Linear Model using the real price of oil for 106 years of data from 1913 to 2018 concerning the asymmetric problem in filtering and forecasting. We use DLM form of the basic Hoteling Model under Quadratic loss function, Kullback-Leibler, Hellinger and LINEX trying to address the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Radiation research
دوره 150 1 شماره
صفحات -
تاریخ انتشار 1998